
A Ping-Pong Ball Catching and Juggling Robot: a Real-Time
Framework for Vision Guided Acting of an Industrial Robot Arm

Holger H. Rapp
Institute of Measurement and Control Theory

Karlsruhe Institute of Technology – KIT
Engler-Bunte-Ring 21

76131 Karlsruhe, Germany
holger.rapp@kit.edu

Abstract—This paper investigates the possibilities of real-time
control of standard industrial robot arms by the means of a ping-
pong ball juggling system that is able to catch a ball thrown by
a human and to keep the ball airborne for more than 30 min.
The sensors are two industrial cameras operating at 60 Hz. We
discuss the image processing and the controlling algorithms used.
Emphasis is placed on comparing the widespread naive linear
model and a novel physically correct model of the flight trajectory
of the ball. While both models are sufficient for the juggling task,
it is shown that only the non-linear model is able to predict the
impact parameters sufficiently early and precise enough to solve
the initial catching task.

The performance of the complete systems is also documented
in a supplementary video [8].

I. INTRODUCTION

Many of the juggling tasks that humans can perform have
been investigated for machines as well. A comprehensive
overview is given by [11].

The subtask we are interested in is best described as paddle
juggling: the idea is that a ball is kept in the air by repeatedly
hitting it upwards. If the starting conditions - the balls initial
position and velocity - are precisely known this problem can be
solved with an open loop controller and no sensors whatsoever
[1], [9], [12]. Some uncertainties in the starting conditions, will
requires some kind of sensory input and therefore a closed
loop controller. The work of Rizzi et. al. is most influential
in this area. Notably, [10] presents a paddle juggler that was
remarkable for its time: a distributed system was used to
interpret data from a stereo camera system to close the control
loop of a custom built robot. The vision system and linear
models notably constrain the starting conditions though, that
means that the ball must be released in a very specific fashion,
the machine is unable to catch a ball thrown by a human.

Recently, the use of stock industrial robots has become
viable and those systems have therefore moved into the focus
of research. [6] uses a 6 degrees-of-freedom (DOF) industrial
robot comparable to ours, but keeps the constraints on the
starting conditions of the ball for similar reasons as prior work.

This paper discusses our solution to the catching and paddle
juggling tasks which we formulate as follows:

• The system must be able to catch a ball thrown by a
human towards it. The ball should then be juggled and
kept bouncing on the racket.

Fig. 1. The robot used in the experiments juggling a ball.
The novelty of this paper is therefore in the ability to catch
the first ball when it is thrown by a human on the racket and
smoothly transition to the juggling of the ball. We do away
with the constraints on the starting conditions of the ball and
allow for the uncertainty that comes with human involvement.
As we will see, the naive linear model usually employed
for the trajectory prediction of the ball is not sufficient to
accomplish this task.

We therefore expand on the literature by investigating a
physically exact flight model for the ball which allows for
unconstrained starting conditions. This model is necessary for
the initial catch of the ball where a linear model fails. We
also provide solutions for engineering constraints commonly
found in industrial robots which were not designed for real
time control tasks. This includes coping with the big dead time
before movements are started and the lack of trajectory control:
our system only accepts incremental movement commands,
i.e. no direct control over the movement speed or trajectory is
possible.

II. EXPERIMENTAL SETUP

The experimental setup is depicted in Fig. 2. The main cal-
culations are done by a standard PC (2.2 GHz, 2 GB) running
Linux. Attached to this computer are two cameras which act as
sensors for the application. The computer processes the input
from the cameras and sends the movement commands to the
robot via the industrial PC that contains the proprietary control
software for the joints. The movement of the robot acts back



y

x

z
Industrial PC

Controlling PC

Robot

Top Camera

Left Camera

Fig. 2. Experimental setup and origin of work space.
on the flying ball closing the control loop. The software of the
framework is written in Python and all calculations are done in
the robot’s right-hand world coordinate system which has its
origin in its foot. The throw direction of the ball is along the
negative x-axis. The Robot used in this system is a Kuka KR5
sixx R850 with a reach of 850 mm, 6 degrees of freedom and a
theoretical maximum movement speed of 7.5 m/s. It is delivered
with an industrial PC running a real time operating system and
an embedded version of Microsoft Windows as frontend to
the user. The canonical way of getting these robots to move is
by off-line teaching them control points and connecting path
segments which relate the points to each other. The robot will
then follow a path as soon as it is triggered to move. The path
cannot be changed while the robot is moving.

For our system, real-time control was mandatory. Here,
we used the software KUKA.Ethernet RSI XML 1.1 by
the manufacturer of the robot. The software allows to add
Cartesian corrections to off-line taught trajectories by sending
them in an XML format via UDP over an Ethernet network to
the industrial PC [2]. With some modifications, the framework
also accepts degenerate off-line trajectories of no movement at
all or deltas of arbitrary size. This is equivalent of being able
to give the robot a position set-point which it tries to reach
as fast as possible. But this does not offer direct control over
timing and speed of the robot. Especially repeatability is not
guaranteed and there is a certain variation in the dead time
and the moved trajectory.

The sensory part of the setup comprises of two IEEE
1394b grayscale cameras (Point Grey Flea2). The cameras
are synchronized and acquire images with 640x480 pixels at
8 bit color depth with 60 Hz. The Python library to read
images from the cameras has been specially developed for this
task with an emphasis on low overhead and high acquisition
performance. We released it as an open source project [7].

III. ALGORITHM

The complete task can be broken down into the following
individual problems:
• Measuring the current position of the ball b in three-

dimensional space (see Sec. III-A)
• Determining the impact parameters for a desired height

over ground zi (see Sec. IV).
• Determine the ideal movement of the robot for keeping

the ball bouncing:

– Determining the ideal orientation of the racket for
reflecting the ball straight upwards (see Sec. III-B1)

– Determining the ideal movement command to hit
the ball with maximum movement speed (see
Sec. III-B2).

– Make sure that deviations in the controlling are
corrected over time (see Sec. III-B3). This ensures
the stability of juggling.

The general flow of information is depicted in Fig. 3. As
soon as a new image pair is acquired from the cameras, the
individual images are processed and the ball is searched in
each of them. If the ball is detected in each image, the two
coordinates are used to triangulate the current ball position b
in space (see Sec. III-A). This ball position is then fed into a
predictor as a new measurement. The predictor uses a model
(see Sec. IV-A) to predict the impact position and impact time
of the ball. This information is fed to two distinct controllers
– max impulse and horizontal reflection – which output
the set-point for the robot movement: a Cartesian position
rsetpoint and two angles defining the normal of the racket’s
surface (ϕsetpoint = (b,c)) (see Sec. III-B). The sample-and-
hold element waits until its inputs have converged. It will then
issue one movement command to the robot which acts back
on the ball by hitting it, effectively closing the control loop.

A PID controller corrects the output angles of the vertical
reflection controller and ensures the stability of juggling.

A. Image Processing

The image processing is designed to be fast and effective.
The experimental setup is stationary and under constant illu-
mination. This allowed us to finely tune the parameters. As a
result practically no misdetections of the ball have occurred
in our experiments.

To detect a ball in an image, the image is first binarized with
a fixed threshold, then contours are detected. All detected con-
tours are then checked for various shape parameters (e.g. area,
x/y ratio, position, skewness) which can all be easily calculated
from the contour’s moments [4]. If more than one candidate
contour remains, the one closest to the point used in the last
frame is favored.

To get a proper view-ray in our Cartesian world space, we
have to account for the lens distortions of the cameras. We
calibrated our cameras according to an established lens model
[3]. Since we are only interested in the undistortion of our
sub-pixel exact ball position, we numerically invert the model
only for this one point in each step.

The position of the ball in the pixel coordinate frame of
the images corresponds to view rays which can be used to
triangulate the position of the ball in space. The positions
of the cameras with respect to each other and to the robot’s
coordinate frame are calibrated.

B. Controllers

The predictors evaluated for this setup are discussed in the
next section (see Sec. IV) in more detail. All predictors output
an estimate of the three impact parameters: the impact position



b̂ b

t̂iv̂i

ϕ̂v,i ∆ϕ

rsetpoint

∆z

r, ϕ

r

Controller  for 
vertical reflection

PID

Tracker
with Prediction Model

Sample / Hold Robot

Image Processing Physics of the ball

+

+

+

Controller for max 
impulse

xi,setpoint

x̂i

ϕsetpoint

Fig. 3. Control diagram

xi, the impact speed vi and the impact time ti. xi is used
directly to position the racket, the other two parameters are
used to determine the normal vector for the racket expressed
through the two Euler angles ϕ = (b,c) and the point in
time when the robot should start to move upwards to give
a maximum impulse in z direction onto the ball.

1) Controller for vertical reflection: It is assumed that the
ball makes a ideal elastic collision with the racket and is
therefore reflected. The ball arrives with a speed vi and we
want it to be reflected straight upwards: its direction after
reflection should be d = ez. We can use the reflection law

d = vi−2(vT
i n)n (1)

to derive the required normal vector n = (nx,ny,nz)T of the
racket. For this, we multiply (1) from the left with vT

i and
solve for vT

i n, choosing the sign of the solution so that n = ez.
Re-substituting this in (1) and solving for n results in

n =
d−vi√

2(||vi||−vT
i d)

. (2)

The robot expects the set-point orientation in Euler angles,
therefore the controller must output the two corresponding
angles that lead to this normal vector. They can be calculated
from n via b = arctannx/nz and c = arctanny/nz.

2) Controller for maximum impulse: Vertical reflection is
not enough: the ball loses kinetic energy due to friction and
deformation each time it collides with the racket. It is therefore
mandatory to put energy into the ball to keep it airborne. Since
we can not control the speed of the robot’s movements directly,
we must give it a movement command at a precise time so
that its movement speed is at its maximal value when the
ball collides with the racket. The delay T0 between movement
command and achieving maximum speed was determined in
off-line experiments beforehand. Knowing T0, we can give the
robot an upwards movement command by an amount of ∆z at
time ti−T0, the robot will then hit the ball with its maximum
speed. After a constant delay ∆T , the command to move down
again is issued to make sure that the robot is ready for the next
bounce. The output of the controller for maximum impulse can
therefore be written as

∆z(t) =
[
σ
(
t− (ti−T0)

)
−σ

(
t− (ti−T0 +∆T )

)]
δ z, (3)

with σ being the Heavyside step-function and δ z being the
constant amount that the racket should move upwards, in our
case δ z = 0.05m.

3) PID controller: There are some sources of deviations:
the racket might be installed with a slight offset in the angles
compared to the robot coordinate system, the dead time of the
robot varies slightly from movement command to movement
command, the controller for vertical reflection neglects angular
velocity and the deformability of the ball in its calculations
and all inputs to the controllers are estimations. This leads to
instability: the robot would loose the ball after a few bounces
when it would leave its control space. We want the robot to
always juggle the ball where it can reach it easily and where
its movements are as fast as possible.

To achieve this, a PID controller is used that corrects the
angles outputted by the controller for vertical reflection. Its
input is the difference between the desired impact position
ri,setpoint in the middle of the working area of the robot and the
estimated impact position xi. The integral part of the controller
guarantees that the real impact position gets closer and closer
to the set-point with each consecutive bounce.

IV. PREDICTION OF THE TRAJECTORY

Given N measurements and a desired impact height zi, we
want to predict the impact position xi, impact speed vi, and
impact time ti of the ball.

We first have to choose a model that describes the physical
conditions of the throw (see Sec. IV-A), then we have to decide
on a mechanism to predict the impact state of the model given
some observations (see Sec. IV-B). The combination of model
and predictor should make the predictions accurately with N
being as small as possible.

A. Models

We investigated two distinct models. The next section
introduces the naive linear model which is commonly used
in the literature. It is analytically tractable but is unable to
capture the physics.

The following section discusses a physically correct model
that incorporates all of the dominant effects on the movement
of the ball.

1) Naive Model: A point mass m is assumed for the
ballistic motion. The only force that acts on the mass is
the gravitational force Fg = m(0,0,−g)T =−mgez. For slow
speeds and high masses m, air drag and other non-linearities
can be ignored.

This model results in the well know flight parabola with
the initial position x0 = (x0,y0,z0)T and initial speed v0 =



(v0x ,v0y ,v0z)
T :

x(t) = x0 +v0t− 1
2

gt2ez and v(t) = v0−mgez t (4)

Solving xz(ti) = zi – with zi being the desired impact height –
for ti gives either one or two solutions in the future. If there
are two solutions, we are always interested in the later time
because this is the one where the ball will come down on the
racket:

ti =
1
g

(
v0z +

√
v2

0z
+2g(z0− zi)

)
. (5)

Substituting this into (4) directly yields the desired information
for the impact parameters.

The naive model has the advantage of being linear and
therefore of being analytically tractable. However for a flying
ping-pong ball, the assumption of no interaction with the
surrounding air is incorrect: friction is acting on the very light
ping-pong ball in non neglectable ways.

2) Physically Correct Model: We therefore present a novel
model which takes the effect of friction into account. The
dominant effects are the decelerating force Fd due to air drag
and the Magnus effect FM, which changes the flight direction
of the ball due to its rotation. We will discuss both effects in
this order.

a) The Air Drag: The Reynolds number for our case is
in the magnitude of

Re =
ρvd
η
≈ 9200, (6)

with ρ ≈ 1.29 kg/m2 being the density of air which depends
on the temperature of the surroundings, v ≈ 3 m/s being an
estimate of the flying speed of the ball, d = 0.04m being
the flow diameter of the ball and η = 17.1 µPa · s being the
viscosity of air. The Reynolds number is high, we can safely
assume the border case of turbulent flow in all cases.

The air drag of a body in turbulent flow is described by

Fd =
1
2

ρACD|v|2
v

|v|
, (7)

with A = π r2 being the cross section of the ball that is hit by
the flow. v is the velocity of the ball, CD is the drag coefficient
which depends on the geometry of the flying object and is
between 0.1 and 0.5 for a spherical object in surroundings of
high Reynolds numbers.

b) The Magnus Effect: If a sphere with radius r rotating
with angular velocity ω is thrown through a medium with
speed v, the flow speed of the medium is different for its
top and bottom part. This corresponds to a difference in static
pressure at the two sides of the sphere and leads to a buoyant
force of

FM ≈ 2ρCMπr2(ω×v) (8)

given that |ω|r� |v| which is the case here. This effect is
called Magnus force. CM is a dimensionless number called
Magnus factor that depends on the Reynolds number and
on the geometry and surface roughness of the object in the
flow. For our experiment with a reasonable smooth sphere,
we expect this to be < 0.5.

c) Combined Model: This leads to the complete model,
which is the combination of gravitational force Fg, Magnus
force FM and air drag Fd:

F = m ẍ = Fg +Fd +FM (9)

= −gez−
1
2

ρACD|v|2
v

|v|
−2ρCMπr2(ω×v) (10)

This model describes the flight curve of our ping-pong
ball physically correctly and exhaustively, but it has the
disadvantage of high complexity: ω is changing significantly
from throw to throw but can’t be measured and must therefore
be estimated from the measurements of the position of the ball.
CD and CM can be assumed to be constant in our case, but can’t
be directly measured either.

B. Kalman Predictors

Each of these models need to be fitted to measurements and
predicted forward in time to get the impact parameters. A good
predictor must be able to predict sequentially (or on-line) when
new measurements arrive, should be able to incorporate prior
knowledge - like the probability density function (PDF) of the
starting conditions - and should offer confidence information
about the impact parameters. For example if we knew the
impact position up to a precision of a few centimeters, we
can be sure that the ball would hit the racket because of the
racket’s size.

All of these features are provided by the Kalman filter. It
is widely used in tracking tasks in robotics and computer
vision. It estimates sequentially and is therefore very fast,
it can incorporate prior knowledge in form of a Gaussian
prior distribution over the model’s parameters and its state
predictions also provide variance information, which can be
directly interpreted as confidence information.

The naive flight curve model can be used directly as model
for the Kalman filter while adding a system variance that
accommodates for the non-linearities in the flight curve of
the ball. This should enhance the prediction performance by
allowing the state to change slightly in a non-linear way.
Another advantage is that the initial state and variances can be
learned from training data; this effectively incorporates prior
knowledge about the throwing speeds.

The physically correct models uses a non-linear filter known
as the unscented Kalman filter [5] (UKF): the basic idea is
to interpret state and covariances of the filter as a Gaussian
approximation to the correct PDF and to translate this through
the non-linear model. This is done via the unscented transform:
one chooses enough points from the PDF to fully describe a
Gaussian distribution and translates those through the model.
The translated points describe a Gaussian approximation to
the a-posteriori probability.

A major problem for our case is that the Kalman filter
can only track system states, i.e. the current parameters of the
model. To predict the impact time ti with the current system
state we trace the model forward in time until we reach the
impact height zi. This can be done analytically for the naive
model. For the physically correct model one has to use a



0.0 0.2 0.4 0.6 0.8 1.0
0
2

4
6
8

10
12

n
o
rm

. 
fr

e
q
u
e
n
cy

0.0 0.1 0.2 0.3 0.4 0.5
0

5
10

15
20
25
30

n
o
rm

. 
fr

e
q
u
e
n
cy

Fig. 4. Determination of constants CF (upper) and CM (lower).

ODE solver with event handling that can integrate the current
state forward in time and report any zero crossings in the z
component. The so found impact time ti is then used to predict
the system state at impact.

V. EXPERIMENTS
A. Model Experiments

1) Generation of the Ground Truth: We used 746 distinct
throws for our experiments. All throws were conducted by
humans and there were 14 different throwers. For the model
evaluation, we used all throws, even those that were not
caught by the robot. We investigate the measurements till the
first impact on the racket happened, because all consecutive
bounces are easier: the vertical speeds are very small if the
horizontal reflection worked properly on the first bounce. The
following prediction can therefore be initialized with a narrow
prior distribution and converges much faster. All later bounces
are similar to the second one and can be handled similarly.
This is therefore a reoccurring system.

Since the ball was only measured at discrete time intervals,
we cannot guarantee that we have really seen the ball at the
point of impact. Therefore we have to make an estimate to
where the ball really hit the racket. This is done by fitting the
physically correct model (see Sec. IV-A2) to all measurements
of the throw using a Levenberg-Marquardt algorithm. This fit
can than be used to find the state at impact height zi. This data
was used as ground truth for the evaluations. The remaining
problem is the estimation of the values CD and CM , which
need to be determined before fitting individual throws can be
properly done. For this, all throws were taken into account. A
physically correct model was fitted to each individual throw
while treating the initial ball position x0, speed v0, angular
velocity ω0, CD and CM as unknowns to be varied. This gave
us samples from a distribution over CD and CM which can
be seen in Fig. 4. The many outliers come from throws that
do not fit the model: for example balls that were only rolling
on the floor. To cope with the outliers, we fitted a students-
t distribution to this data, which gives a sane first mode of
CM = 0.1418 and CD = 0.4903. These values have been used to
fix CM and CD. The ground truth was generated by refitting all
throws without CM and CD in the parameter set and predicting
the impact position. A sample throw with the ground truth can
be seen in Fig. 5.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 5. t[s] – z(t)[m]. First 8 bounces of a sample throw. The colored dots
define the measurements, each color represents one bounce. The black line is
the fitted physically correct model for the first bounce and the black dot is
the ground truth of the impact position.

2) Results: To compare the linear model and the physically
correct model, we used the following scheme: for each throw,
we fed the predictor one measurement at a time and let it
predict the impact parameters. We denoted the root squared-
error (RSE) in the impact position RSE ∆xi, the RSE in impact
speed RSE ∆vi, and the absolute error in impact time |∆ti|
compared to the ground truth. Errors that were off by more
then 5 units (m for position, m/s for speed and s for time) were
discarded as outliers. In this way we got a mapping from the
number of measurements used for a prediction N to a set of
prediction errors {RSE ∆xi, RSE ∆vi, |∆ti|}.

The initial state and covariances for the Kalman filters
were learned by partitioning the sets of throws into 4 sets
of 149 throws and one set of 150 throws. Leave-one-out
cross validation was used to learn the initial parameters and
covariances and to test them for all throws.

The result of this testing scheme for N over RSE ∆xi and
RSE ∆vi can be seen in Fig. 6. Depicted are mean (solid line),
median (dashed line) and one standard deviation around the
mean (dotted lines).

The complex model converges faster on the correct impact
position which allows for earlier robot movement. The main
improvement of the new model is in the impact velocity pre-
diction though: the naive model’s performance with predicting
the impact speed is not sufficient to catch the initial throw by a
human: the ball bounces out of the robots reach immediately.
The convergence of the complex model is fast enough to make
an excellent prediction in time.

For N = 15 the t-test was used to test the hypothesis
that the RSE/absolute error of the naive model is smaller
or equal to the one of the physically correct model. The
test rejected the hypothesis for each impact parameter (xi,vi,
and ti) for a confidence level of 95%. We therefore have a
significant confidence that the complex combination of model
and predictor is better than the simple one.

The mean computation time for incorporating one new
measurement and making an impact prediction was 0.16 ms for
the naive model and 5.97 ms for the physically correct model
on the PC controlling the experimental setup. The physically
correct model is significantly slower because a differential



5 10 15 20 25 30 35 40
Number of Measurements N

0.1

0.0

0.1

0.2

0.3

0.4

R
S
E
 ∆

x
i 

[m
]

5 10 15 20 25 30 35 40
Number of Measurements N

0.2

0.0

0.2

0.4

0.6

0.8

R
S
E
 ∆

v
i 

[m
/s

]

Fig. 6. Prediction performance comparison of impact position (left) and impact speed (right). Red: naive model with Kalman predictor. Green: Physically
correct model with unscented Kalman predictor.

equation has to be integrated numerically in each step. Both
methods are fast enough to be used in the real-time framework
of this work.

B. Experiments for the complete system

The physically correct model tracked by the unscented
Kalman filter was used for all experiments below.

To test the performance of the complete system more throws
were done. To avoid measuring the throwing skills of the
human only the throws that the robot was able to catch and
bounce five times were taken into account. The robot was then
left to bounce the ball for at least 100 times (≈ 2 min).

Three more throws were conducted where the robot was left
to juggle for as long as he could.

1) Results: 98 of the 100 throws were ended manually after
the 100 bounces, the remaining two throws ended by the ball
lying on the racket because it had too little initial impulse to
be kept bouncing by the robot (e.g. the parabola it was thrown
in was too flat).

The three endurance experiments ended after 43 min, 46 min
and 55 min because of a desynchronization of the cameras
which were caused by a firewire bus reset triggered by the
kernel on the controlling PC.

The performance of the complete systems was also pre-
sented in a supplementary video accompanying this paper. It
can be found under [8].

VI. SUMMARY

This paper described an experimental setup for a ping-
pong ball catching and juggling industrial robot arm. The
hardware setup is all off-the-shelve comprised of two cameras,
a PC and a small industrial robot. The proposed framework
which consists on the image processing and controlling was
described. The algorithms employed proved to be fast and
stable enough for the task at hand. Two models for the flight
of the ball have been discussed: the naive model usually
employed in the literature and a novel physically correct model
which captures the non linearity of the flight curve. Both
models were tracked using corresponding linear and non linear
variations of Kalman filters to predict the impact parameters.
The naive model was unable to predict the impact speed good
enough to allow a ball thrown by a human to be caught, the

physically correct model performed good enough to solve the
task at hand: It was shown that the robot is able to catch
thrown balls and to keep them in the air in 98 of 100 cases
and – if the patience of the experimenter allows it – keep
juggling the ball for at least 30 min. A video was made to
accompany this paper with sample throws and an explanation
of the experimental setup [8].

It has been shown that even difficult real-time controlling
tasks like tracking, catching and reacting to the physics of a
fast moving ball are possible with today’s industrial robots.
However, the shortcomings of the robots must sometimes be
equalized by improving models to capture reality more closely.
To find widespread application in industry, the ease of use and
flexibilities of the real-time components of today’s industrial
robots still need to be improved.

REFERENCES

[1] M. Buehler, ”Robotic tasks with intermittent dynamics,” PhD thesis,
Yale University, New Haven, 1990

[2] Kuka Robot Group, ”KUKA.Ethernet RSI XML 1.1,” KUKA Roboter
GmbH, 2007

[3] J. Heikkila and O. Silven, ”A four-step camera calibration procedure
with implicit image correction,” in Proc. IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp 1106–
1112., 1997.

[4] B. Jähne, ”Digital image processing: concepts, algorithms and scientific
applications,”. Springer-Verlag London, UK, 1991.

[5] S. Julier, J. Uhlmann and H. Durrant-Whyte, ”A new approach
for filtering nonlinear systems,” in Proc. of the American Control
Conference, 3, pp 1628–1632. American Automatic Control Council,
Evanston, IL, 1995.

[6] A. Nakashima, Y. Sugiyama and Y. Hayakawa, ”Paddle juggling of
one ball by robot manipulator with visual servo”, Proc. IEEE ICARCV
2006.

[7] H. Rapp et al., ”The pydc1394 camera library for Python,” 2009
https://launchpad.net/pydc1394

[8] H. Rapp, Supplementary video to this paper, 2011
http://www.mrt.kit.edu/rappweb/pprobot supplementary.mp4 (65 MB)

[9] P. Reist and R. D’Andrea, ”Bouncing an unconstrained ball in three
dimensions with a blind juggling robot”, in Proc. ICRA 2009, pp. 1774–
1781, IEEE 2009

[10] A. A. Rizzi, Whitcomb, ”Distributed real-time control of a spatial robot
juggler” in IEEE Computer, 25, pp. 1224, 1992.

[11] S. Schaal and C. G. Atkeson, ”Open Loop Stable Control Strategies for
Robot Juggling,” in Proc. IEEE International Conference on Robotics
and Automation (1993), 3, pp. 913-918

[12] T.L. Vincent, ”Controlling a ball to bounce at a fixed height,” in Proc.
American Control Conference (1995), pp.842-846


